671 research outputs found

    High-dimensional semi-supervised learning: in search for optimal inference of the mean

    Full text link
    We provide a high-dimensional semi-supervised inference framework focused on the mean and variance of the response. Our data are comprised of an extensive set of observations regarding the covariate vectors and a much smaller set of labeled observations where we observe both the response as well as the covariates. We allow the size of the covariates to be much larger than the sample size and impose weak conditions on a statistical form of the data. We provide new estimators of the mean and variance of the response that extend some of the recent results presented in low-dimensional models. In particular, at times we will not necessitate consistent estimation of the functional form of the data. Together with estimation of the population mean and variance, we provide their asymptotic distribution and confidence intervals where we showcase gains in efficiency compared to the sample mean and variance. Our procedure, with minor modifications, is then presented to make important contributions regarding inference about average treatment effects. We also investigate the robustness of estimation and coverage and showcase widespread applicability and generality of the proposed method

    Toward Guaranteed Illumination Models for Non-Convex Objects

    Full text link
    Illumination variation remains a central challenge in object detection and recognition. Existing analyses of illumination variation typically pertain to convex, Lambertian objects, and guarantee quality of approximation in an average case sense. We show that it is possible to build V(vertex)-description convex cone models with worst-case performance guarantees, for non-convex Lambertian objects. Namely, a natural verification test based on the angle to the constructed cone guarantees to accept any image which is sufficiently well-approximated by an image of the object under some admissible lighting condition, and guarantees to reject any image that does not have a sufficiently good approximation. The cone models are generated by sampling point illuminations with sufficient density, which follows from a new perturbation bound for point images in the Lambertian model. As the number of point images required for guaranteed verification may be large, we introduce a new formulation for cone preserving dimensionality reduction, which leverages tools from sparse and low-rank decomposition to reduce the complexity, while controlling the approximation error with respect to the original cone
    • …
    corecore